

Series 9FL

Piezoresistive Pressure transducer capsule with very high stability and a flanged design

Features

- · Very high long-term stability
- · Robust, compact stainless-steel housing with flange
- · Front-flush, crevice-free welded diaphragm
- · Varied installation options
- · Very high proof pressure
- · Optimised thermal behaviour

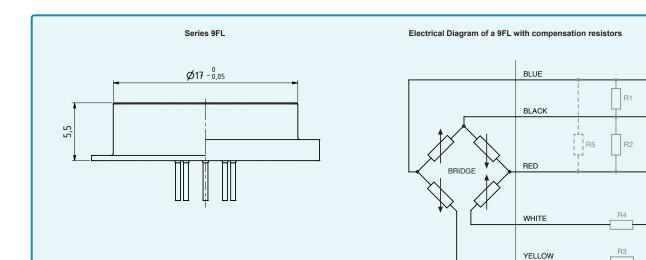
Technology

- Piezoresistive pressure sensor chip, insulated encapsulated in an oil-filled metal housing
- · Housing with flange for axial seal using an O-ring
- Typical range of output signal of 160 mV/mA

Typical Applications

- OEM
- Heating pumps
- Autoclaves
- · Meteorology

Accuracy


± 0,25 %FS

Long-term Stability

± 0,20 %FS/year

Pressure Ranges

0...0,2 bar to 0...200 bar

OPTIONAL COMPENSATION RESISTORS

TRANSDUCER

-OUT

+IN

+OUT

-IN+out

-IN-out

Series 9FL – Specifications

Standard Pressure Ranges

Relative pressure		Absolute pressure	Absolute pressure	Proof pressure	Sensitivity		
PI	R	PAA	PA		min. typ. max		max.
-0,20,2	00,2	00,2				98 130	163
-0,30,3	00,3	00,3		3	98		
-0,50,5	00,5	00,5					
-10	01	01	01	6	60	80	100
-11	02	02	02	0	40	53	66,7
-12	03	03	03	9			
	05	05	05	15	24	32	40
	010	010	010	30	12	16	20
	020	020	020	60	6	8	10
	030	030	030	90	4	5,3	6,7
	050	50 050 050 150	150	2,4	3,2	4	
		0100	0100	300	1,2	1,6	2
		0160	0160		0,75	1,0	1,25
		0200	0200				
bar	bar rel.		bar	bar	mV / (mA × bar)		
Reference pressure at ambient pressure		Reference pressure at 0 bar abs. (vacuum)	Reference pressure at 1 bar abs.	Based on reference pressure	The standard pressure ranges are available from the warehouse. Additional calibrations to intermediate pressure ranges can also be made.		

Performance

Accuracy @ RT (2025 °C)	± 0,25 %FS typ.	Non-linearity (minimum value setting BFSL),	
Accuracy @ KT (2025 °C)	± 0,50 %FS max.	pressure hysteresis, non-repeatability	
0# OF (00 05 °C)	< ± 25 mV / mA	Uncompensated, the sensitivity value must be added for PA.	
Offset @ RT (2025 °C)	< ± 2 mV / mA	Compensated with R3 or R4.	
Compensated temperature range	-1080 °C	Other temperature ranges between -55150 °C are possible as an optio	
Long town stability.	≤ ± 0,2 %FS	For pressure ranges > 1 bar, per year under reference conditions.	
Long-term stability	≤±2 mbar	For pressure ranges ≤ 1 bar, per year under reference conditions.	
Position dependency	≤ 2 mbar	Calibrated in vertical installation position with metal diaphragm facing downwards.	
Temperature coefficient zero TCzero	≤ ± 0,02 %FS / K	For pressure ranges ≥ 2 bar	
pre-compensated with R1 or R2	≤ ± 0,4 mbar / K	For pressure ranges < 2 bar	
Townstature coefficient consistivity Towns	≤±0,06 %/ K	For pressure ranges ≥ 3 bar	
Temperature coefficient sensitivity TCsens	≤ ± 0,12 % / K	For pressure ranges < 3 bar	
Temperature coefficient total bridge resistance TC-resistance	18003000 ppm / K		

Series 9FL – Specifications

Electrical Data

Half-bridge configuration

Constant current supply	1 mA nominal 3 mA max.	
Bridge resistance @ RT (2025 °C)	3,5 kΩ ± 20 %	
Electrical connection	Gold-plated pins ø 0,45 mm L = 4 mm ± 0,5 mm	Optional: Silicone wires AWG28 (0,09 mm2), L = 70 mm, other lengths on request.
Insulation	> 100 MΩ @ 500 VDC	

Mechanical Data

Materials in contact with media

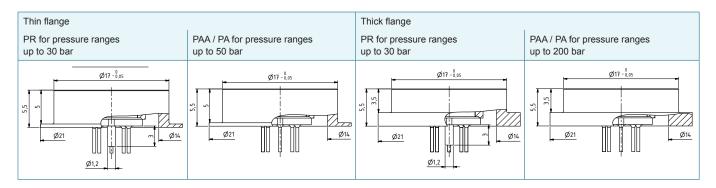
Housing and diaphragm	Stainless steel AISI 316L		
O-ring	None		

Other materials

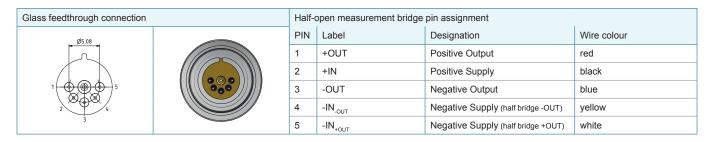
Pressure transducer capsule oil filling	Silicone oil
---	--------------

Further details

Diameter × height	ø 17 / 21 mm × 5,5 mm	See dimensions and variants
Connection for capillary for reference pressure compensation	ø 1,2 mm × 3 mm	Optional: Capillary (silicone)
Weight	approx. 7 g	


Environmental conditions

Media temperature range	-40125 °C	Operating temperature,	
Ambient temperature range	-40125 °C	consider o-ring.	
Storage temperature range	-40125 °C	Icing not permitted.	
Vibration resistance	10 g, 102000 Hz, ± 10 mm	IEC 60068-2-6	
Shock resistance	50 g, 6 ms	IEC 60068-2-27	
Natural frequency (resonance)	> 30 kHz		
Endurance @ RT (2025 °C)	> 10 million pressure cycles	0100 %FS	
Dead volume change @ RT (2025 °C)	< 2 mm ³		



Series 9FL - Dimensions and variants

Overview of Versions

Electrical Connection

Customised configurations on request

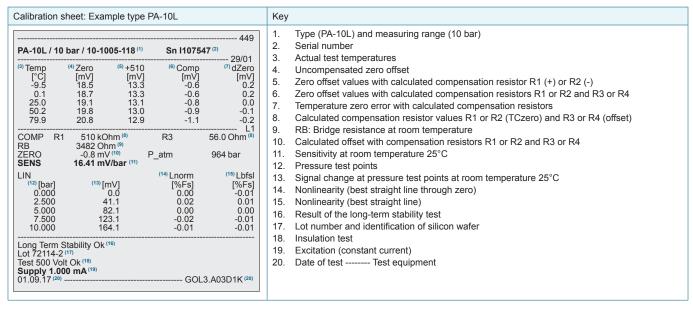
- · Calibration to other pressure ranges
- Calibration to other temperature ranges within -40...150 °C
- Calibration with mathematical modeling
- Electrical connection via silicone wires execute
- Housing and diaphragm made of Hastelloy C-276 or titanium
- Other oil filling types for pressure transducer capsule
- · Modifications to customer-specific applications

Examples of Similar Products

Series 9FLX: Pressure transducer capsule 9FL with digital compensation electronics

Series PD-9FLX: Differential pressure transducer capsule version with digital compensation electronics

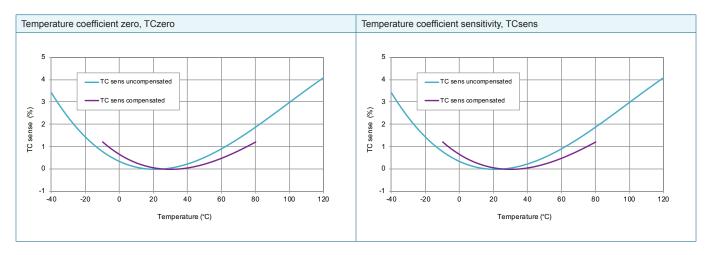
Series 7FL: More compact design with flange


Series 9L: Version without flange

Series 9FL – Analysis and Characteristic Lines

Standard Analysis

The 9FL are intended for o-ring mounting and depend on the stress isolation provided by o-rings for performance within stated specifications. This installation enables the values measured during factory testing to remain valid. If the pressure transducers are not installed free from stress, the mechanical forces may change the measured values and the stability.



Notes

- The indicated specifications apply only for constant current supply of 1 mA. The pressure transducer module must not be supplied with more than 3 mA.
 The output voltage is proportional to the supply current. If the supply deviates from the calibration, this will cause signal shifts.
- · The compensation resistors described in this data sheet are not part of the pressure transducer module and are not included in the scope of delivery.
- It is recommended to use compensation resistors with temperature coefficients of < 50 ppm/°C for large temperature ranges. Pressure transducer modules and resistors can be exposed to different temperatures.
- In addition, a maximum TC-sensitivity can be guaranteed on request or the value for the compensation resistor (R5) can be indicated.
 See "Electrical diagram of compensation resistors" on page 1.

Characteristic Lines

Examples of typical characteristic curves of the temperature coefficients, normalised at 25 °C, uncompensated vs. compensated.

Series 9FL – Analysis and Characteristic Lines

Mathematical compensation model

The 9FL series pressure transducers can be ordered with an optional mathematical compensation model.

The compensation model is a mathematical formula that helps to calculate the compensated pressure value of the pressure transducer. Both the pressure signal and the temperature signal of the pressure transducer are incorporated into the calculation. Polynomial functions are used as the basis for this mathematical model.

The pressure transducers are characterised in the

factory in order to produce the compensation model. This involves measuring pressure and temperature signals at various pressure and temperature levels. Comparing the measured values with the known pressure and temperature values makes it possible to calculate the compensation coefficients of the pressure transducer. These compensation coefficients are made available to the customer along with the respective pressure transducer.

myCalibration

Content

myCalibration is a digital data platform provided free of charge to KELLER Pressure customers. It provides an easy option for transferring and providing sensor calibration data.

Format

The calibration data is available in the standard JSON file format, which facilitates smooth integration into the customer's software. The file structure is clearly defined in a publicly accessible JSON schema. This means that the customer is able to integrate the data seamlessly into their software.

Access

The platform can be accessed either via a standard web browser (web view) or directly within the customer's linked software using an API. The calibration data remains available in myCalibration for 24 months.

Web app

Customers can access the calibration data for their sensors via a user-friendly interface. The system ensures secure authentication by asking users to enter their personal login details, thereby preventing unauthorised access to the data by third parties.

The user has the option to use various search and filter functions to download calibration data for specific sensors or mass export multiple datasets simultaneously

API

Customers have the option to use the REST API for automated access and to integrate it into their processes. This means that calibration data for new sensors can be called up automatically and then processed, for example.

Documentation

Comprehensive technical documentation including example software is available at the following link: https://mycalibration.github.io/